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J. Phys. A: Math. Gen. 14 (1981) 2207-2213. Printed in Great Britain 

Fourier transf orms of distributions and associated Feynman 
integrals 

H P Berg and Jan Tarski 
Institut fur Theoretische Physik, Techiiische Universitat Clausthal, D-3392 Clausthal- 
Zellerfeld, Federal Republic of Germany 

Received 10 November 1980 

Abstract. Infinite-dimensional distributions and their Fourier transforms are considered. 
Some of such transforms are shown to be Feynman-integrable. From the resulting Feynman 
integrals an equation of motion and a weak form of canonical commutation relations are 
obtained. 

1. Introduction 

It6 observed (1966) that Fourier transforms of bounded measures can be very 
effectively handled in Feynman integration. In particular, Feynman integrals of these 
functions can be reduced to measure-theoretic integrals, and this circumstance allows 
one to perform (with rigour) various useful manipulations. These functions and their 
integrals were subsequently investigated extensively by Albeverio and HQegh-Krohn, 
and to a lesser extent by Chebotarev and Maslov, Truman, and others. (See e.g. the 
articles in Albeverio et a1 (1979, § I) and references cited therein.) 

It is natural to extend this line of research to Feynman integrals of Fourier 
transforms of distributions. The infinite-dimensional distributions are of course not as 
well understood as finite-dimensional ones, cf KrCe (1976). However, at least some of 
such distributions are derivatives of bounded measures, and then their Fourier trans- 
forms differ from Fourier transforms of measures by polynomial factors. The cor- 
responding Feynman integrals therefore reduce to integrals of known integrands with 
respect to the given measures. 

In this article we confine ourselves to a rather special class of distributions. This 
class suffices to establish equations of motion and a form of canonical commutation 
relations. We recall that these applications were discussed heuristically on various 
occasions (Feynman 1948, Feynman and Hibbs 1965). For the present (rigorous) 
analysis we assume that the potentials are Fourier transforms of measures satisfying 
certain boundedness properties. The equations that we establish are of course expected 
to have a muct broader validity. 

We note also the following. Since the Feynman integrals in question can be done in 
closed form, it is largely immaterial which definition of these integrals is adopted. For 
definiteness we will employ the two definitions given in Tarski (1979, 1980). 
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2. Feynman integrability 

To orient ourselves, let us first consider a one-dimensional integral, and the case where 
the distribution is the first derivative of a measure A.  We write the Fourier transform as 

f ( u )  = [a, dh (x)] eixu = - I dh (x)a, eixU = - iu  dh ( x )  eixu. I 
A formal evaluation of the Feynman integral o f f  proceeds as follows: 

( - i ~ / 2 7 r ) ~ ”  I du exp(i~u’/2)f(u) 

= - I dh (x) ax( ( -  i ~ / 2 ~ ) ’ / ’  J du exp( i~u*/2)  elxu ) 
= - J dh (x) 8, exp(x2/2ix) = - (iK j-’ dh (x) x exp(x’/2i~). I (2) 

We see that we have to require dlh I(x)(l+ 1x1) < 00, where Ih I is the absolute variation 
of A ,  and the need for the 1 in (1 + Ix 1)  is ‘evident in equations (1). 

We turn to the infinite-dimensional situation and to mathematical details. We 
assume a real Hilbert space 2, and the Feynman integral with the weight 
exp(iK(6, [)/2), where Im K 3 0, K f 0. In this article Feynman integrability refers both 
to the definition in terms of projections and to the definition in the sense of analytic 
continuation (Tarski 1979,1980 respectively). For the former definition, the reference 
family of sequences of projections is the maximal family 8 (but cf the subsequent 
qualification). 

8. Since such 
derivatives will affect only a finite number of coordinates, and will act on polynomials 
and exponentials, it is irrelevant whether we assume the derivative of Gfiteaux or of 
FrCchet. Next, let F be a Bore1 measure on X of bounded absolute variation, and let 
l ~ ,  . . . , lk E X. Then Dsl . . . Dc,,p is a distribution, whose Fourier transform in analogy 
to (1) is 

We denote by D, the derivative associated with the vector 

F(5)  = I [D,, * * DL dP(X)l exp(i(x7 6)) 
ae 

(3) 

Proposition 1. The above Fourier transform F is Feynman integrable provided 

J dlwl(x)t1+ ~ 1 ,  x > ~ )  . . . (1 + KL, x)i)< a, (4a)  

and under this hypothesis, 

Proof. First we consider the definition in the sense of analytic continuation. We replace 
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-iK by 6' and suppose b, b'>O. We are then interested in the following measure- 
theoretic integral, which can be done in closed form: 

J ( b ,  a,  b';  F )  

= [ ~ 5 )  exp(-b(t-a, 5 - a ) ~ )  exp(-b'(e, 5)/2) 

x ( - i )"( l~,  5 )  . . . (l", 5 )  I d w k )  exp(i(x, 5 ) )  

=exp(-b(a, a ) /2)  [ dp(x)(l1, a/&). . . (la, W a x )  

X exp[ - :(b + b')-'(x - iba, x - iba)]. ( 5 )  

(Here the last scalar product is bilinear, or symmetric, even though x -iba is in the 
complexified space.) If Re(b + b')  > 0, then the integrand is a damped gaussian which is 
modified by functions of slower growth in a finite number of directions. It follows that J 
is analytic in b, b' if Re(b + b')  > 0, and we may let b' = - i K .  

In order to justify passing to the limit b -* 0, we recall the bound (Tarski 1979, 
inequality (3.1 1); this inequality presupposes IIm b I < $IRe K I): 

lexp[ - i(6 --iK)-'(x, ,y - 2iba)]< exp(41Re K ](a,  a)). (6 )  
This bound and the hypothesis on p, together with the bounded convergence theorem, 
justify taking the limit b + 0 inside the p-integral. 

For the definition in terms of projections, we start with the evaluation ( 5 ) ,  where the 
replacements b' + - iK, x + PJ, a + P,a are made. Note that if Re b > 0, then we are in 
the case Re ( b  + b') > 0 considered before, the integrand in ( 5 )  contains a damped 
gaussian and is bounded, and so the integral converges. Furthermore, P, occurs in effect 
only in the combinations Pl,y and (Pp, P,a). But s u p x e p , ~ < s u p x e ~ ,  and the factors 
involving (Pp, Pp) can be readily majorised independently of P,. We thus obtain a 
bound independent of P,, and the bounded convergence theorem allows us to take 
PI + 1 inside the integral. The limit b + 0 then proceeds as before. 

For applications we will need some estimates for convolutions of measures. 
Consider an entire function cp and the associated convolution-series: 

cp(2) = 1 aj2,  pQ = C aip(*.j), (7) 
* .  

where p (  J )  = p * . . . *(U ( j  times). 

Lemma 2. Let 11, . . . , l,, E X, let k be an integer 3 0, and let 

d x )  = (1 + Kl1, x)l) * * * (1 + Kl", x m  +IlxlOk. @a) 

Suppose that 

Then 
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Proof. We will establish (8c), and then (8d) will follow by repeating the same kind of 
argument and by taking the limit j +  00. Let x = XI+”’. Then, in view of the triangle 
inequality, 

1 +Ilxllc(l +llx’ll)(1 +llx”ll), 

and there is an analogous inequality involving 1 + ( ( f ;  x)l. Therefore 

3. An equation of motion 

We consider a quantum particle on R”, evolving during the time interval [0, t ] .  The 
associated Hilbert space X of paths is then determined by 

We recall that q(T) (0 S T c t )  is a kind of partial scalar product, 

If the integrand contains the factor S ( 7 ( t )  - y) corresponding to an end-point condition, 
this can be handled conveniently by introducing the projection P onto the space 
{U&: U E R“}. Then we may decompose 

We also set p T , o ( ~ )  = @ T ( T )  - 7T/t. 
Our first concern is to investigate the conditions on the potential. We recall the 

observation of It6 (1966), that a potential which is the Fourier transform of a bounded 
measure on R ”  yields an integrand for the Feynman integral which is a similar 
transform over Xo. We write therefore 

V ( x )  = I dv(u) eiux, 
R” 

and we will consider conditions of the form (where k is an integer a 0) 

( 1 4 4  
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We suppose for definiteness that the integrand contains the factor S(r](t) - y). Then 

-i jOrd r  V [ r ] ~ ( ~ ) f y ~ / t ] =  - i  l o t d i j  dv(u) exp(i(ubT,o, Go)) exp(iuyT/t) 

where the factor exp(iuys/t) has been absorbed into p ~ ,  and where ,y ranges over the set 
Since 

IIub7,oII C IIU@,II = 71’21u/ t 1 / 2 / ~ / ,  (16) 
we have llxll L t1’2)uI. We use, moreover, the following inequality, which can be easily 
verified by induction and differentiation: 

(1 + c 1 c2) L ( 1 + c 1) ( 1 + c2)  for c1, c2 a 0, (17) 

and obtain (since 1p1 exp (iky)lS2/pll) 

j d ~ p l ~ ( ~ ) ( l + ~ ~ ~ ~ ~ ) k  s 2  1 d 7 d l y l ( ~ ) ( l + t ~ / ~ 1 u l ) ~ L 2 t ( l + t ” ~ ) ~ p k .  (18) 

The foregoing analysis and lemma 2 now yield: 

Lemma 3. If V is such that a certain p k  <CO, and q ( z )  = 1 aizi is entire, then 

where pp is determined by the convolution series of p1 (cf (15) and (7)), and satisfies 

We will use this lemma with q ( z )  = e’ and also with q ( z  j = e’ - 1. With this lemma 
we are prepared for: 

Proposition 4. Let V be such that p 1 <  00. Let f~ X o  be continuously differentiable and 
vanishing near 0 and t. Then the two terms of the following integrand are integrable, 
and one has the equality 

x ~ o f d L I f ( ~ ) [ m i j ( L I ) + v v ~ ~ ( ~ ) l l  = 0. 

The function ;i is to be interpreted in the sense of distributions: (f, i j )  = -(f, i). 

The Feynman integral may be considered as over XO (after the &function is 
integrated out), or over X, In the latter case one should use approximations defined by 
projections Pi b P (i.e. one should use the family 9 ( P )  of sequences, cf Tarski (1979)). 

Proof. The equality was proved in Tarski (1976) under the assumption of integrability. 
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That article was based on a different definition of the integral, but the proof depends 
only on the integration-by-parts formula, which remains valid in the present case. (See 
Tarski 1979, 9 4. )  

Now, the integrability of the term involving (f, ;i) = - ( f ,  4) follows from pro- 
position 1 :  Since 1 + I(!, {)/ 6 ( 1  + Ilfll)(l+ Il+ll), lemma 3 with p ( ~ )  = e' ensures that the 
hypothesis of proposition 1 is fulfilled. Furthermore, 8 V/8x' is the Fourier transform of 
iu'v(u), which is a bounded measure (since p1<0o). Then J d c f V V  is the Fourier 
transform of a bounded measure pf on go, and the second term as a whole is the Fourier 
transform of pf * pq, and so is integrable in view of lemma 2. 

4. Canonical commutation relations 

We consider again time evolution of a quantum particle. Heuristically, the canonical 
commutation relations take the following form. Insert 

m+'( T + E ) T  ( T )  - 77 (T)m+'( T - E )  - i-'aik 

as a factor in the integrand for the Green function, and then the integrand should + 0 as 
E LO. We offer a partial result toward establishing this limit relation. For brevity in 
writing we now assume a particle on R'. 

Lemma 5 .  Let V be such that p 2 < c 0 .  Take [0, s] as the time interval, suppose 
0 < T - A <  T + A < s, and let f E 2Zo be such that { ( T )  = 0 for 7 > A, Consider the 
following integral: 

x J dcf(cT){m+(T+ c ) [ 7 ( T )  + x ] - [ q ( T )  +x]m+(T-cr )  -i-'}. (21) 
0 

Then this Feynman integral converges. Furthermore, if s LO and I f 1 1  remains constant, 
then K - O(s). Explicitly, 

I K J s ( I x l + ~ y ~ + 3 ~ " ~ ) ( 1  +m-"2)21fll{exp[2s(1 + ~ ' ' ~ ) ' p ~ l -  l } .  (22) 

Observe the following. (a) The above path integral should be regarded as an integral 
over Eo, or else one should use projections Pi 3 P, cf proposition 4. (b) In the notation 
K (s ; y ,  x )  we suppressed some dependences of K. (c) In order to allow for propagation 
from x to y ,  and not only from 0 to y ,  we replaced 7 (7) by 7 ( T )  + x in the integrand. (d) 
The definition (14b)  of the pk presupposes a unit of scale for length, and for mass (since 
h =  1 ) .  

Outline of proof. Convergence of K, or integrability of the integrand, follows in the 
same way as the integrability of the term involving (f, ;i) in proposition 4 .  Next, we 
write exp( -i d7 V )  as 1 +(e"- 1). The first term here corresponds to V = 0, and it 
yields an integral whose evaluation is elementary, and which equals zero independently 
of f. For the other term, we use lemma 3 with e"- 1 as the entire function p, and we 
evaluate the integral as in equation (4b) .  We then majorise this evaluation with the help 
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of (17) and of Schwarz’s inequality in such a way as to be able to apply (19b).  The 
coefficient s112 comes from the norm 11&11, as in (16).  

This lemma might be useful for establishing the commutation relations in the form 
that we mentioned in the beginning, in the following way. Start with the composition 
law, where G is the Green function: 

K ( t ;  Y , x ) =  du dU G ( t - ( T + A ) ;  y ,  u )K(2A;  U, u ) G ( T - A ;  U ,  x ) .  (23)  I 
We would like to prove that K ( t ;  y,x)+O as ALO,  while lemma 5 shows that 
K ( 2 A ;  U, U )  -+ 0. There remains the problem of justifying the interchange of this limit 
with integration over U and U ,  and this problem is beyond the scope of the present 
article. 

We conclude with the following remark. In lemma 5 we did not consider the 
dependence off on s. Clearly, as s L 0, f must also change. We should therefore like to 
point out that the decrease K - O(s) for l l f l l ~  constant allows us to take f such that 
l l f l l -  s-l” as s L 0. (Consider e.g. f ( ~ )  = 3s- for f s  < T C $s, f = 0 otherwise. Then 
lpll= ( 3 / ~ ) ” ~ ,  and as s LO,f approaches a step function, andf, a 6-function. The form of 
the canonical commutation relations mentioned in the beginning of this section indeed 
suggests that the S-function might be admissible here. 
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